Monotonic convergence of fixed-point algorithms for ICA

نویسندگان

  • Phillip A. Regalia
  • Eleftherios Kofidis
چکیده

We re-examine a fixed-point algorithm proposed by Hyvarinen for independent component analysis, wherein local convergence is proved subject to an ideal signal model using a square invertible mixing matrix. Here, we derive step-size bounds which ensure monotonic convergence to a local extremum for any initial condition. Our analysis does not assume an ideal signal model but appeals rather to properties of the contrast function itself, and so applies even with noisy data and/or more sources than sensors. The results help alleviate the guesswork that often surrounds step-size selection when the observed signal does not fit an idealized model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence of modified iterative algorithm for family of asymptotically nonexpansive mappings

In this paper we introduce new modified implicit and explicit algorithms and prove strong convergence of the two algorithms to a common fixed point of a family of uniformly asymptotically regular asymptotically nonexpansive mappings in a real reflexive Banach space  with a uniformly G$hat{a}$teaux differentiable norm. Our result is applicable in $L_{p}(ell_{p})$ spaces, $1 < p

متن کامل

Strong convergence theorem for solving split equality fixed point problem which does not involve the prior knowledge of operator norms

‎Our contribution in this paper is to propose an iterative algorithm which does not require prior knowledge of operator norm and prove a strong convergence theorem for approximating a solution of split equality fixed point problem for quasi-nonexpansive mappings in a real Hilbert space‎. ‎So many have used algorithms involving the operator norm for solving split equality fixed point problem‎, ‎...

متن کامل

On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces

In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.

متن کامل

Linear Geometric ICA: Fundamentals and Algorithms

Geometric algorithms for linear independent component analysis (ICA) have recently received some attention due to their pictorial description and their relative ease of implementation. The geometric approach to ICA was proposed first by Puntonet and Prieto (1995). We will reconsider geometric ICA in a theoretic framework showing that fixed points of geometric ICA fulfill a geometric convergence...

متن کامل

Algorithms for Independent Components Analysis and Higher Order Statistics

A latent variable generative model with finite noise is used to describe several different algorithms for Independent Components Analysis (ICA). In particular, the Fixed Point ICA algorithm is shown to be equivalent to the ExpectationMaximization algorithm for maximum likelihood under certain constraints, allowing the conditions for global convergence to be elucidated. The algorithms can also b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2003